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The correlated motion of electrons in the presence of strong orbital fluctuations and correlations is investi-
gated with respect to magnetic couplings and excitations in an orbitally degenerate ferromagnet within the
framework of a nonperturbative Goldstone-mode-preserving approach based on a systematic inverse-
degeneracy expansion scheme. Introduction of the orbital degree of freedom results in a class of diagrams
representing spin-orbital coupling which become particularly important near the orbital-ordering instability.
Low-energy staggered orbital fluctuation modes, particularly with momentum near (7/2,/2,0) (correspond-
ing to period 4a orbital correlations as in charge-exchange (CE) phase of manganites involving staggered
arrangement of nominally Mn>*/Mn** ions and staggered ordering of occupied 3x>—r?/3y*—r? orbitals on
alternating Mn>* sites) are shown to generically yield strong intrinsically non-Heisenberg (1—cos ¢)?> magnon
self-energy correction, resulting in no spin stiffness reduction but strongly suppressed zone-boundary magnon
energies in the I'-X direction. The zone-boundary magnon softening is found to be strongly enhanced with
increasing hole doping and for narrow-band materials, which provides insight into the origin of zone-boundary

anomalies observed in ferromagnetic manganites.
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I. INTRODUCTION

The orbital degree of freedom of the electron has attracted
considerable attention in recent years due to the rich variety
of electronic, magnetic, and transport properties exhibited by
orbitally degenerate systems such as the ferromagnetic man-
ganites, which have highlighted the interplay between spin
and orbital degrees of freedom in these correlated electron
systems.l’2 Orbital fluctuations, correlations, and orderings
have been observed in Raman spectroscopic studies’ of or-
biton modes in LaMnQO;, polarization-contrast-microscopy
studies* of La,sSr; sMnO,, magnetic susceptibility and in-
elastic neutron-scattering studies® of La,Ru,0,,, and reso-
nant inelastic soft x-ray scattering studies® of YTiO; and
LaTiOs3. A new detection method for orbital structures and
ordering based on spectroscopic imaging scanning tunneling
microscopy is of strong current interest’ in orbitally active
metallic systems such as strontium ruthenates and iron pnic-
tide superconductors.

The role of orbital fluctuations on magnetic couplings and
excitations is of strong current interest in view of the several
zone-boundary anomalies observed in spin-wave excitation
measurements in the metallic ferromagnetic phase of colos-
sal magnetoresistive manganites.3~'# The presence of short-
range dynamical orbital fluctuations has been suggested in
neutron-scattering studies of ferromagnetic metallic manga-
nite La,_,(Ca,_,Sr,) MnO;.'* These observations are of the
crucial importance for a quantitative understanding of the
carrier-induced spin-spin interactions, magnon excitations,
and magnon damping, and have highlighted possible limita-
tions of existing theoretical approaches.

For example, the observed magnon dispersion in the I'-X
direction shows significant softening near the zone boundary,
indicating non-Heisenberg behavior usually modeled by in-
cluding a fourth-neighbor interaction term J, and highlight-
ing the limitation of the double-exchange model. Similarly,
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the prediction of magnon-phonon coupling as the origin of
magnon damping’ and of disorder as the origin of zone-
boundary anomalous softening'® have been questioned in re-
cent experiments.''~!* Furthermore, the dramatic difference
in the sensitivity of long-wavelength and zone-boundary
magnon modes on the density of mobile charge carriers has
emerged as one of the most puzzling feature. Observed for a
finite range of carrier concentrations, while the spin stiffness
remains almost constant, the anomalous softening and broad-
ening of the zone-boundary modes show substantial en-
hancement with increasing hole concentration.'!:12

Theoretically, the role of orbital-lattice fluctuations and
correlations on magnetic couplings and excitations has been
investigated within an orbitally degenerate double-exchange
model with an interorbital interaction V and the Jahn-Teller
coupling.'® Based on a strong-coupling expansion, this ap-
proach is restricted to the strong-coupling limit V>t¢. The
final calculations for the magnon self-energy, carried out in
terms of a phenomenological parameter, show significant
zone-boundary magnon softening only for ferromagnetic or-
bital correlations and extremely close to the orbital-ordering
instability.

If orbital fluctuations have signature effects on magnetic
excitations in a ferromagnet with orbital degree of freedom,
they can be probed indirectly through neutron-scattering
studies. A detailed investigation of the orbital fluctuation
magnon self-energy is therefore of strong current interest,
especially with respect to dependence on interorbital interac-
tion strength, band filling, and different orbital fluctuation
modes. In this paper we will present a theory for spin-orbital
coupling and magnon self-energy, and examine how the cor-
related motion of electrons in the presence of strong orbital
correlations near the orbital-ordering instability influences
magnetic couplings and excitations.

We will employ a diagrammatic approach which allows
interpolation in the full range of interaction strength from
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weak to strong coupling. In this approach correlation effects
in the form of self-energy and vertex corrections are incor-
porated systematically so that the Goldstone mode is pre-
served order by order. Based on a systematic inverse-
degeneracy expansion scheme,!” the approach has been used
recently to study spin-charge coupling effects, which give
rise to strong magnon energy softening, damping, and non-
Heisenberg behavior in metallic ferromagnets,'3-1°

The present work will also extend the recent investigation
into role of orbital degeneracy and Hund’s coupling on mag-
netic couplings and excitations in a band ferromagnet.”’ Or-
bital degeneracy and Hund’s coupling were shown to en-
hance ferromagnetism by strongly suppressing correlation-
induced quantum corrections to spin stiffness and magnon
energies. An effective quantum parameter was obtained for
determining the magnitude of quantum corrections and the
theory was applied to calculate the spin stiffness for a real-
istic multiorbital system such as iron. We will show here that
the spin stiffness remains essentially unaffected by the inter-
action V due to the non-Heisenberg (1—cos ¢)? behavior of
the magnon self-energy resulting from orbital fluctuations
and correlations.

In manganites, an important role is also played by the
cooperative Jahn-Teller distortion of O%>~ ions which lifts the
twofold degeneracy of e, electronic levels of Mn due to a
combination of orbital geometry and electrostatic repulsion,
leading to staggered orbital correlations. This is qualitatively
similar to the local-orbital moment and staggered orbital cor-
relations introduced by the interorbital density interaction
Vn;n;g which relatively pushes up the 3 orbital energy if the
a orbital density (n,,) is more than average, thus self-
consistently lifting the orbital degeneracy. Therefore, orbital
correlations and fluctuations due to dynamical Jahn-Teller
distortion can be qualitatively treated in terms of an effective
interorbital interaction.

The structure of the paper is as follows. Starting with a
degenerate two-orbital Hubbard model including an interor-
bital interaction V, the first-order quantum correction dia-
grams for the irreducible particle-hole propagator are ob-
tained in Sec. II. As basic ingredients in the diagrammatics,
spin and orbital fluctuations are briefly discussed in Sec. III.
The magnon self-energy contributions due to orbital fluctua-
tions and spin-orbital coupling are obtained in Secs. IV and
V. The interplay between magnetic and charge contributions
to the spin-orbital interaction vertex is discussed in Sec. VI
and orbital fluctuations near (7r/2,7/2,0) are shown to yield
strong zone-boundary magnon softening. Extension to finite
Hund’s coupling J and the ferromagnetic Kondo lattice
model (FKLM) are discussed in Secs. VII and VIII, and con-
clusions are presented in Sec. IX.

II. TWO-ORBITAL HUBBARD MODEL
We will consider a two-orbital Hubbard model
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on a simple-cubic lattice with two orbitals (labeled by «, B)
per site and intraorbital nearest-neighbor (NN) hopping z.
The Coulomb interaction matrix elements included here are
the intraorbital interaction U, the interorbital density interac-
tion V, and the interorbital exchange interaction (Hund’s cou-
pling) J. The last term represents the transverse part (S;,S;, B
+S7.S; ;p) of the Hund’s coupling and the density interaction
term yields the longitudinal part S5,S; ;5 o that altogether the
Hund’s coupling term has the form —JS;,-S;5. The Hamil-
tonian therefore possesses continuous spin rotation symme-
try and hence the Goldstone mode must exist in the sponta-
neously broken-symmetry state.

Hund’s coupling has been shown to strongly enhance fer-
romagnetism in an orbitally degenerate system by strongly
suppressing the correlation-induced quantum corrections.?’
An effective quantum parameter [U?+(N—-1)J2]/[U+(N
—1)J]? was obtained for determining the magnitude of quan-
tum corrections for an N-orbital system, in analogy with 1/S
for quantum spin systems. The rapid decrease in this quan-
tum factor from 1 to 1/N as J/U increases from 0 to 1
results in strong suppression of quantum corrections and
hence significant stabilization of ferromagnetism by Hund’s
coupling, particularly for large N.

In order to highlight the role of interorbital Coulomb in-
teraction V and orbital fluctuations on magnetic couplings
and excitations in this paper, we will first set J=0. The case
of finite Hund’s coupling will be treated later in Sec. VII.

In a band ferromagnet, all information regarding carrier-
induced spin interactions J;;= Uzqﬁ,-j and excitations are con-
tained in the irreducible particle-hole propagator ¢(q,w),
which then yields the exact transverse spin-fluctuation (mag-
non) propagator,2’

. _ ¢(q.w)
Xqo) =1 — Udlqo) (2)

Our approach is to incorporate correlation effects in ¢(q, )
in the form of self-energy and vertex corrections using a
systematic expansion ¢=¢?+ 1V + > +--- which pre-
serves the Goldstone mode order by order. Rooted within an
inverse-degeneracy expansion scheme, this systematic ap-
proach is nonperturbative with respect to the interaction
terms and therefore yields a controlled approximation which
remains valid in the strong-coupling limit. Contributions to
the first-order quantum correction ¢'" due to the Hubbard
interaction U and Hund’s coupling J have been discussed
carlier.0

The additional first-order diagrams for ¢ arising from the
interorbital interaction V are shown in Fig. 1. The diagrams
shown here are for a saturated ferromagnet in which minority
(]) spin particle-hole fluctuations are absent. Here Figs. 1(a)
and 1(b) represent quantum corrections due to electronic
self-energy renormalization by orbital fluctuations, Fig. 1(c)
represents the corresponding vertex correction, and Fig. 1(d)
represents vertex corrections involving coupling between
transverse spin and orbital fluctuations. The vertex correction
diagrams as in Fig. 1(d) (nine such diagrams) can be repre-
sented in terms of an effective spin-orbital interaction vertex
.o @s shown in Fig. 2(a). The spin-orbital interaction ver-
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FIG. 1. First-order diagrams for the irreducible particle-hole propagator ¢ arising from interaction V involving: [(a) and (b)] self-energy
corrections due to orbital fluctuations, (c¢) corresponding vertex correction, and (d) vertex corrections involving spin-orbital coupling
(altogether, nine such diagrams). The dashed and wavy lines represent interactions U and V, respectively.

tex has three contributions involving three-fermion vertices,
as shown in Fig. 2(b). The missing fourth diagram vanishes
because of the assumption of complete polarization.

As the Goldstone-mode condition U¢=1 at ¢=0 is al-
ready exhausted by the zeroth-order (classical) term ¢, the
sum of the higher order (quantum) terms ¢'"+ ¢ +- -+ must
exactly vanish at g=0. For this cancellation to hold for arbi-
trary U, J, and V, each higher order term ¢ in the expan-
sion must individually vanish, implying that the Goldstone
mode is preserved order by order. We will demonstrate this
exact cancellation explicitly for the new contributions due to
V in the first-order quantum correction ¢V,

Systematics in our two-orbital model can be formally in-
troduced, in analogy with the inverse-degeneracy (1/N) ex-
pansion for the Hubbard model, by: (i) treating the two
physical orbitals «,B as pseudospins, (i) introducing N
pseudo-orbitals (u) for each pseudospin, and (iii) generaliz-
ing the interorbital density interaction to (V/N)Z;, 1 auip,-
Now, each interaction line V yields a factor 1/N and each
bubble yields a factor N from the summation over pseudo-
orbitals, resulting in an overall 1/N factor for the bubble
series, and an overall (1/N)" factor in the nth-order quantum
correction .

III. SPIN AND ORBITAL FLUCTUATIONS

The diagrammatic expansion above involves spin and or-
bital fluctuation propagators, the characteristic energy, and
momentum distribution of which are important in view of the
spin-orbital coupling investigated in this work. The ladder
series in Fig. 1(d) yields the effective intraorbital transverse
spin interaction,

U X()(Q’Q)
aw ,Q — ~ J2
R T G XD R BTN X
=2 ~p—""
- U Xsp(QsQ) U Q+w%—i7] (3)

in terms of the random-phase approximation (RPA)-level
magnon propagator x,p, having an advanced pole in the satu-
rated ferromagnetic state (n;=m, n;=0). Here x,(Q,(2) is
the bare antiparallel-spin particle-hole propagator, mg=~m
and w% are the magnon-mode amplitude and energy, and the
small weight of gapped Stoner excitations has been ne-
glected for simplicity.

Similarly, the bubble series in Fig. 1 involving odd num-
ber of bubbles yields, in terms of the RPA-level orbital fluc-
tuation propagator, the effective intraorbital density interac-
tion,

¢
{

FIG. 2. The vertex correction diagrams in Fig. 1(d) can be rep-
resented (a) in terms of a spin-orbital interaction vertex I', or,. The
three diagrammatic contributions of I'y, o, involving three-fermion
vertices (b) generate the nine diagrams involving spin-orbital cou-
pling. The missing fourth diagram vanishes because of the assump-
tion of complete polarization.
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FIG. 3. (Color online) Momentum-integrated orbital fluctuation spectral function (a) shows strong suppression of the paraorbiton energy
scale near the orbital-ordering instability; the low-energy-integrated part (b) shows that low-energy orbital fluctuations are concentrated near

(7,7, ).

wocey o) = X0 QQ)
Veff(Q’Q) = 1— VZX%)T(Q,Q)

=- VZXorb(Q’Q)

- V2 xo1(Q.Q)
2 1-Vx1(Q. )

(4)

near the orbital-ordering instability where Vy,;~ 1. Here
X01(Q.Q) is the bare spin-T particle-hole propagator. The
orbital fluctuation propagator is symmetric yu(—Q,—€2)
=Xon(Q, L)), with a spectral representation,

” d_QIm[Xorb(QvQ,)]

5
QO-Q +iy ®)

Xorb(QsQ) == J

0 v

for its retarded part, with a continuum distribution over the
orbital fluctuation energy ()'.

Exactly at quarter filling (m=n=0.5 per orbital), the or-
bital fluctuation propagator diverges at Q=(, 7, ) in the
absence of any next-nearest-neighbor hopping ¢’ terms which
destroy Fermi-surface nesting, indicating instability toward
staggered orbital ordering. With increasing hole doping, the
spectral-function peak shifts below (7,7, ).

Figure 3(a) shows the momentum integrated orbital fluc-
tuation  (paraorbiton)  spectral ~ function ~ Xo(1/m)
Im x.,(Q,{)) with increasing interaction strength V. Here,
and in the following, we have set the hopping term z=1
=W/12 as the unit of energy, where W is the bandwidth. In
analogy with the well-known paramagnon response with ap-
proaching magnetic instability, the paraorbiton energy scale
is strongly suppressed from order bandwidth in the weak-
coupling regime to relatively very low energies near the
orbital-ordering instability.

Figure 3(b) shows the momentum dependence of the low-
energy () <2) integrated part of the orbital fluctuation spec-
tral function near the R point (7,7, ), which shows that
low-energy orbital fluctuations are concentrated near the
wave vector (,7,) corresponding to staggered orbital
fluctuations. With increasing doping away from quarter fill-
ing, the peak shifts below (7, 7, ), indicating incommensu-
rate fluctuations.

IV. ORBITAL FLUCTUATION MAGNON SELF-ENERGY

We will first consider diagrams for ¢ in Figs. 1(a)-1(c)
involving electronic self-energy corrections due to orbital
fluctuations and the corresponding vertex correction. Absent
in the single-orbital case, these diagrams are characteristic of
orbital degeneracy, interorbital interaction, and orbital fluc-
tuations, and strongly influence magnetic couplings and ex-
citations through electronic band renormalization, particu-
larly in vicinity of the orbital-ordering instability. The vertex
correction diagrams [Fig. 1(d)] involving both spin and or-
bital fluctuations will be discussed in the next section.

Quantum corrections to the irreducible particle-hole
propagator ¢ in Eq. (2) yield the magnon self-energy,

S(q,0) = mU$V(q0) + pP(qo)+--],  (6)

in terms of which the magnon propagator x *(q,w)=m/
[w+ wilo)—E(q,w)]. The first-order magnon self-energy cor-
responding to diagrams in Figs. 1(a)-1(c) involving only or-
bital fluctuations is then obtained by summing over the
bosonic degrees of freedom of the orbital fluctuations,

Egl)o(q, w) = mU2[¢(“) + ¢(b) + ¢(c)]
7 dQ
- msz f 2 -Xorb(Q - q,Q - w)
Q J_x 2

XF4(quast)9 (7)

where I'; is the four-fermion vertex obtained by integrating
out the fermionic degrees of freedom in the diagrams for ¢
shown in Figs. 1(a)-1(c). As will be further discussed in the
following three sections, this orbital fluctuation magnon self-
energy physically represents contributions due to (i) coupling
between Stoner excitations and orbital fluctuations and (ii)
self-energy corrections involving band-energy renormaliza-
tion and spectral-weight transfer.

Using the spectral representation for the orbital fluctua-
tion propagator (retarded part since I', has only advanced
poles with respect to (2), we obtain
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- dQ) * dQ' T _ ,Q,
Et(alrl))(qaw) == mVZE f —f air Im Xorb(Q q )
Q J-—= 0

2i T Q-0-Q'+iy
XTI'4(Q.q,Q, w)
S [ i o(Q0TA(Q'. 0.0 )
QJo T
=mVX['4(Q",q.Q", ®))q .qr. (8)

where the average four-fermion vertex (I'y)q s denotes av-
eraging over orbital fluctuation modes Q' =Q-q. Evalua-
tion of the four-fermion vertex I'y, resolved into different
contributions corresponding to distinct physical mechanisms,
is discussed below. Term by term, the four-fermion vertex I'y
vanishes identically for g=0, in accord with the Goldstone
mode.

A. Stoner-orbital coupling

In the single-orbital case, the magnon self-energy due to
spin-charge coupling included a Stoner contribution repre-
senting coupling of charge excitations with the gapped part
of spin excitations.'® In analogy, diagrams [Figs. 1(a)-1(c)]
yield contributions which represent a Stoner-orbital cou-
pling,

1
FStoner — U2 ( )
¢ % flo-& +Q-in

><< 1 1 )2
eltq—el_+w—i77 eth—elT(_Q+q+w—i7]

)

in which the first term represents the Stoner excitation mode
(Q,Q) and the quadratic term is the Stoner-orbital interac-
tion vertex, which involves only magnetic energy denomina-
tors. Here €, = ,— oA are the ferromagnetic state band ener-
gies for the two spins in terms of the free-particle energy
€ =—2t(cos k,+cos ky+cos k;) for the simple cubic lattice
and the exchange splitting 2A=mU. The band energy super-
scripts +(—) refer to particle (hole) states. There is no restric-
tion on the energy ell_Q +q 10 Eq. (9) as both particle and hole
states contribute. Of the four terms in this quadratic interac-
tion vertex, the two square terms arise from diagrams [Figs.
1(a) and 1(b)] while the cross terms are from diagram [Fig.
1(c)]; the characteristic quadratic structure therefore stems
from orbital fluctuations renormalizing electrons of both
spins and is clearly absent in the single-orbital case involving
spin-down renormalization only. This intrinsic quadratic
structure resulting from orbital degeneracy yields a charac-
teristic non-Heisenberg (1—cos ¢)*> magnon self-energy, re-
sulting in no spin stiffness reduction but strong zone-
boundary magnon energy reduction.

PHYSICAL REVIEW B 81, 064430 (2010)

B. Electronic band renormalization

Due to exchange of interorbital fluctuations in the dia-
gram [Fig. 1(a)] involving intermediate spin-1 states, the
spin-T hole (particle) energies are pulled down (pushed up),
increasing the particle-hole energy gap, and thereby sup-
pressing the particle-hole propagator ¢. Including the corre-
sponding contributions from the vertex correction diagram
[Fig. 1(c)], we obtain the electronic band renormalization
contribution

1
Fband —_ U2 ( )
¢ % elT(tQ+q—elT('+Q—w

2
) . (10)

involving one charge and two magnetic energy denomina-
tors. The finite infinitesimal term i as in Eq. (9) has been
dropped for compactness.

><( 1 1
- +o 60— €g. o

C. Spectral weight transfer

The electronic self-energy correction in diagram [Fig.
1(a)] also results in spectral-weight transfer and redistribu-
tion between occupied and unoccupied spin-| states. How-
ever, there is no net change in occupancy and magnetization.
The corresponding spectral weight transfer contribution

1 2
spectral _ 22
mr=-v (“ —€ Q—)
k Ek—Q+q Ek + w

1 1
X - 11
( A R - AP - AP w) (1)

involves one magnetic and two charge energy denominators.
The first (negative) contribution corresponds to loss of spin-1{
hole spectral weight due to transfer to particle states and the
second (positive) contribution corresponds to the reverse
process.

1. Cancellation of most singular contributions

Singular contributions in Egs. (9)—(11) for I' exactly can-
cel out. For example, the most singular contribution in Eq.
(9) involving two powers of the vanishing energy denomina-
tor (€, o € g.q+ @) exactly cancels with the corresponding
contribution from Eq. (10). Similarly, the next most singular
contributions in Egs. (9)—(11) also exactly cancel out.

2. Average over orbital fluctuation modes

The average (I'y)q o of the four-fermion vertex over or-
bital fluctuation modes directly yields the magnon self-
energy from Eq. (8). Since orbital fluctuations peak below
(7, ar,ar) for finite doping (Fig. 3), the vertex (I'y) was
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FIG. 4. (Color online) The Stoner, band, and spectral contributions of the averaged four-fermion vertex (I'y) shows strong non-

Heisenberg (1—cos g)* behavior in the I'-X direction.

estimated by averaging over a selected Q' region (-0.8
<cos Q’;<—O.6) near (7,7, ), with Im x.,(Q’,Q') as-
sumed flat inside and zero outside.

The g dependence of the averaged four-fermion vertex
(I'4(¢)) in the I'-X direction of the Brillouin zone is shown in
Fig. 4. The band contribution is negative due to renormaliza-
tion of band energies by orbital fluctuations, as discussed
above. The band contribution rapidly diminishes in the
strong-coupling limit [Fig. 4(b)], as does the Stoner contri-
bution. The spectral contribution survives in the strong-
coupling limit. All contributions have strongly non-
Heisenberg character, with negligible magnitude at small g
but rising sharply near the zone boundary, implying no spin
stiffness correction but appreciable zone-boundary magnon
softening. Orbital fluctuation modes near (7,0, 7), etc., also
yield significant non-Heisenberg character to the interaction
vertex I'4(g) and the three contributions exhibit similar be-
havior.

How does the orbital fluctuation magnon self-energy com-
pare with the bare magnon energy? Taking the orbital fluc-
tuation energy ()’ to be negligible in comparison to the band-
width near the orbital-ordering instability and the estimated
average (I'4(q))q'=0.3 near the zone boundary from Fig.
4(c), we obtain (for m=0.35 and V=3)

30 (@, 0) =m0 (q, )

S (@) ~ m(V22)(T4(q))gr = 0.35 X (9/2) X 0.3 = 0.5,
(12)

which is comparable to the bare zone-boundary magnon en-
ergy w3%0.35(1 —cos q) =0.7 for realistic strength of the
interorbital interaction.

V. SPIN-ORBITAL COUPLING MAGNON SELF-ENERGY

In the previous section, we considered the diagrams of
Figs. 1(a)-1(c) involving electronic self-energy corrections
due to orbital fluctuations. We will now examine the vertex
correction diagrams of Fig. 1(d) representing spin-orbital
coupling, which are particularly important near the orbital-
ordering instability where orbital fluctuations are soft. In
contrast to the single-orbital case where self-energy and ver-
tex correction diagrams were of qualitatively similar order,!”
introduction of the orbital degree of freedom lifts this con-
straint and allows qualitatively independent self-energy and
vertex correction contributions. The corresponding first-order
magnon self-energy,

Q
=S [ 421050 01Q 0.0, [Vefa - Q.- 0]
Q L

Q
= m% f %[Xsp(Q’Q)][Fsp—orb(Q’ q’Q’w)]z[Xorb(q - Q,(l) - Q)]’ (1 3)

where xq, and X, are the spin and orbital fluctuation propa-
gators (Sec. III) and Ty, ,,=U?VI'; represents the spin-
orbital interaction vertex in terms of the three-fermion vertex
I';, evaluation of which is discussed in the Appendix.

In analogy with the spin-charge coupling process,'® this
correlation-induced spin-orbital coupling is analogous to a
second-order Raman-scattering process in which the magnon
(q,w) scatters into an intermediate-state magnon (Q,{))

along with an internal orbital excitation (q—Q, w—{), lead-
ing to significant magnon energy renormalization and mag-
non damping.

The Q,() integrals in the above equation represent inte-
grating out the bosonic (both spin and orbital) degrees of
freedom. As the magnon propagator [XSP(Q,Q)] is purely
advanced in nature, only the retarded part of the product
[Tsp-ov]*[ Xorv] contributes in the €) integral. For simplicity,
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Q= (n/2(rt/2 ,0) =—

mag

Sprorb]z and (b) the total spin-orbital interaction term [I" sp_orb]z

shows a strong anomalous behavior in the I'-X direction. While staggered orbital fluctuation modes near (7,7, ) yield the dominant
contribution to the magnetic part (a), it is modes near (7/2,7/2,0) which yield the dominant contribution to the total (b), which is also

enhanced with hole doping as in (a).

considering the dominant contribution to the spectral repre-
sentation of this product coming from the orbital fluctuation

2(1)orb(q»w) - mz f (
241

Q+wQ

)[Fsp orb(Q q, Q w)]zf

propagator, from Egs. (13), (3), and (5), and the symmetry
property given above Eq. (5), we obtain

dq)’ ImXorb(Q qQ)
Q-w-Q'+iy

— mZE f d_(l/ [Fsp-orb(Q’ qu, w)]2

T w%+w+Q’—i77

Due to magnon decay into internal spin and orbital exci-
tations (—w=wq=w%+ﬂ’), the above magnon self-energy
yields a finite imaginary part representing finite magnon
damping and linewidth, as discussed earlier for spin-charge
coupling.'®

An approximate evaluation of the resulting spin-orbital
magnon self-energy illustrates the importance of the orbital
fluctuation softening near the orbital-ordering instability.
With Q.= and Qspm:w% representing characteristic or-
bital and spin-fluctuation energy scales, we obtain (for w
=0)

m2 <[Fsp—orb(q)]2>Q’ Q0
Qspin + ‘Q’orb - l77

S0 (@) = : (15)

where the angular brackets ( ) again refer to averaging over
the orbital fluctuation modes Q'=Q-gq, as in Eq. (8). Far
from the orbital-ordering instability, the orbital fluctuation
energy (1.4 is of order bandwidth W, which strongly sup-
presses the magnon self-energy. However, near the orbital-
ordering instability, spin-orbital coupling becomes important
due to the relatively much smaller energy denominator
Qspin + Qorb ~t

The spin-orbital interaction vertex Iy, ., is obtained by
integrating out the fermion degrees of freedom in the three-
fermion interaction vertices. This interaction vertex explic-
itly vanishes at momentum ¢g=0 in accordance with the

Im Xorb(Q_an,)~ (14)

Goldstone-mode requirement and yields the dominant ¢ de-
pendence of the magnon self-energy. In order to illustrate the
characteristic non-Heisenberg character of the interaction
vertex, we consider its magnetic part with energy denomina-
tors involving the Stoner gap. This term qualitatively differs
from the charge part of the vertex with energy denominators
involving excitation energies of order bandwidth. Evaluation
of the three-fermion vertices contributing to Iy, oy, is dis-
cussed in the Appendix.
For the purely magnetic part, we obtain

1 1
[mag _UZV ( )
Fipon E ekQ—ek +Q-in ekq—e]T( +w-in

1
T+ T . :|’ (16)
€Q~ €krq-Qt @ —I7

where there is no restriction on the elTHq_Q energies. The
leading order g dependence of the above term is approxi-
mately (1—cos ¢g) as shown below. For a fixed orbital fluc-
tuation momentum Q’'=Q-q, with Q' close to (7,7, )
corresponding to staggered orbital fluctuations, expansion in
powers of €/ A of the square bracket terms in Eq. (16) yields
a contribution (€x_q—€)/2A~(1-cos g) to leading order.
The formally second-order structure of the spin-orbital cou-
pling magnon self-energy [Eq. (15)] involving [Ty, o]
therefore directly yields an intrinsically non-Heisenberg
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FIG. 6. (Color online) The renormalized magnon energy due to
spin-orbital coupling [Eq. (17)] shows strong zone-boundary mag-
non softening in the I'-X direction, which becomes more pro-
nounced with increasing hole doping.

(1—cos g)? contribution to the magnon self-energy, which
yields no spin stiffness quantum correction but significant
magnon energy reduction and damping near the zone bound-
ary, and therefore accounts for the observed zone-boundary
magnon anomalies.

The ¢ dependence of the magnetic part [Fgagrb]z of the
spin-orbital interaction term is shown in Fig. 5(a). Being
small in comparison to the Stoner gap, the boson energies w
and Q in Eq. (16) were set to zero and the momentum Q'
was selected in a range near (7,7, 7), as in Fig. 4. While
[Toss]? shows strong anomalous momentum dependence
for orbltal fluctuation modes near (77, 77, ), when both mag-
netic and charge terms (see Appendix) are included, the net
contribution from these modes is small due to a cancellation,
as shown in Fig. 5(b).

VI. ORBITAL FLUCTUATIONS NEAR (=7/2,7/2,0)

In contrast, for orbital fluctuation modes with momentum
Q' near (7/2,7/2,0), the above cancellation is avoided as
the magnetic contribution to Iy, o, is small. We find that the
total spin-orbital interaction term [I'y, orb]? exhibits a strong
anomalous momentum dependence [Fig. 5(b)] and that it is
strongly enhanced with increasing hole doping, as the band
filling changes from 0.5 (quarter filling) to 0.25 (one-eighth
filling).

In order to quantitatively examine the effect of this
anomalous momentum behavior of Ffp_orb on the magnon dis-
persion, the magnon self-energy was evaluated approxi-
mately using Eq. (15). On averaging [T, o]* over Q’, we
find that the anomalous momentum behavior remains quali-
tatively similar for |Q!|<1 and drops sharply for Q! =1,
whereas in the Q) Q plane the dominant and qualitatively
similar contribution comes from diagonal strips along |Q!
+Q |=, yielding a factor of ~1/2 on planar averaging,
resultmg in an overall phase-space factor of ~(1/3)(1/2).

The magnon self-energy was therefore estimated using
Eq. (15) with Ffp o, @s obtained in Fig. 5(b) for the orbital
fluctuation mode (77/2,7/2,0) and including the above
phase-space factor (taken as 1/10 in our calculations) to ac-
count for momentum averaging over orbital fluctuation
modes. Also, the bare magnon energy wg and the orbital
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FIG. 7. (Color online) Period 4a planar staggered orbital corre-
lations corresponding to orbital fluctuation modes with momentum
near (7/2,7/2,0).

fluctuation energy ()., were taken to be of order f. The
renormalized magnon energy

wg =g =3 () (17)
is shown in Fig. 6 for different band fillings n=(1-x)/2. It is
evident that while the spin stiffness remains essentially un-
changed, the magnon self-energy at the zone boundary be-
comes comparable to the bare magnon energy for realistic
values of the interorbital interaction V, resulting in a zone-
boundary softening which is strongly enhanced with hole
doping. In the presence of staggered orbital correlations such
as near (7/2,m/2,0), weighted averaging over Q' with a
peaked orbital spectral function will further enhance
([Fsp,oer) and therefore the anomalous magnon self-energy.

The orbital fluctuation modes near (7/2,7/2,0) corre-
spond to period 4a planar staggered correlations, as shown in
Fig. 7. Such orbital correlations have been observed in the
charge-exchange (CE)-type charge-ordered phase of the half-
doped (x=0.5) manganites such as the narrow-band com-
pounds such as Pr;_,Ca,MnO; and La,_,Ca,MnO5,?! and the
layered material La,,,Sr3,,MnO, in which magnetic excita-
tions were found to be dominated by ferromagnetic
couplings.?> Therefore, as x approaches 0.5, orbital fluctua-
tion modes near (7/2,77/2,0) may form the dominant con-
tribution to the low-energy part of the orbital fluctuation
spectral function.

The different layers in La;,,Sr;,MnO, are magnetically
decoupled due to negligible interlayer couplings. Extension
of the present investigation of spin-orbital coupling to the
two-dimensional case is therefore of interest with respect to
renormalization of magnetic couplings. In the case of spin-
charge coupling, the renormalized magnon dispersion for a
square lattice does show strong zone-boundary softening
near (7,0) and (0, 7r) while the magnon energy near (7, )
remains undiminished, indicating softening of the nearest-
neighbor ferromagnetic bonds but strong ferromagnetic cor-
relations along the diagonal directions.'®

Orbital fluctuation modes near Q’'=(*,0,0) and
(0, = 7r,0) were also found to yield significant contribution
to the spin-orbital interaction vertex. Involving similar den-
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sity {n;,+n;g) on all sites, such configurations should, how-
ever, be relatively suppressed by an intersite density interac-
tion V'nn;. In contrast, allowing for reduced density on
alternating “empty” sites with vanishing orbital “magnetiza-
tion,” configurations corresponding to modes near
(7/2,7/2,0) with period 4a orbital correlations minimize
the intersite interaction energy V'n;n; and would therefore be
relatively more important.

VII. FINITE HUND’S COUPLING

So far we had set the Hund’s coupling /=0 in order to
highlight the role of interorbital interaction and fluctuation.
For finite J, it is convenient to proceed in two steps. The part
V=J of the interorbital interaction V together with Hund’s
coupling effectively amounts to a purely magnetic interac-
tion —JS;,-S; and has been investigated earlier.?’ This is
because for V=J, the interorbital interaction
(J=J 854/ )Miaeiger acts only between opposite-spin electrons
and so the resulting diagrammatics is similar to the Hubbard
interaction case. The remaining part (V-J) is purely non-
magnetic and yields diagrammatic contributions essentially
as in Sec. II. Thus, corresponding to [Figs. 1(a)-1(c)] dia-
grams involving the bubble series for the orbital fluctuation
propagator, the magnon self-energy is obtained by simply
replacing V by (V-J) in Eq. (7).

For the spin-orbital coupling magnon energy, however,
the interaction ladders in diagrams [Figs. 1(d) and 2] now
involve Hund’s coupling J as well and since the transverse
part of J flips the orbital index in the ladder series, there are
now two contributions to the irreducible particle-hole propa-
gator,

dQ
¢m(q,w)=—2f_2 U (Q.O)[T5(Q.q.Q, )
Q Tl

XV (q-Q.0-0Q) (18)

involving intraorbital (u= ) and interorbital (u= ) spin and
orbital fluctuations. Involving ladders of U and J, the effec-
tive intraorbital and interorbital transverse spin interactions,

e oo

M2 1-Uyx 1-Uyx
U+J)?

z( )[ )(o+ + Xo_} (19)
2 1—U)(O l—UXQ

can be expressed as in-phase (u=a) and out-of-phase (u
=) combinations of the acoustic and optical branches,?”
with U= U *J. Similarly, the effective intraorbital and in-
terorbital density interactions,

w?__M
eff 1— (V_J)ZXST 5
V-J
e ) 0)
1= (V=I)"xor

involve odd and even number of bubbles.
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Now, in the investigation of role of Hund’s coupling on
quantum corrections,?’ it was shown that the interorbital
component U%¥(Q,Q) yields a small Q-integrated contribu-
tion due to partial cancellation from the out-of-phase combi-
nation of the acoustic and optical modes, essentially reflect-
ing an interorbital incoherence. Therefore, the interorbital
component ¢,z should be relatively small and the intraor-
bital component ¢,, is approximately given by Eq. (15),
with V replaced by (V—-J) and U replaced by (U+J).

Due to the purely opposite-spin-density interaction
(J=J 844 )NiaoNigy» the interaction line U connected to the
bubble in the third diagram in Fig. 2(b) for the three-fermion
vertex I'; is also replaced by (U+J). This is consistent with
the enhanced exchange splitting to (U+J)m in the x° energy
denominator, which changes the magnon pole condition to
(U+J)x"=1 and ensures that the three-fermion vertex I'; ex-
actly vanishes at ¢g=0 in accordance with the Goldstone-
mode condition (see Appendix).

VIII. EXTENSION TO THE FERROMAGNETIC KONDO
LATTICE MODEL

Magnetic couplings and excitations in ferromagnetic man-
ganites have been theoretically investigated using the FKLM
and its strong-coupling limit, the double-exchange ferromag-
net. In this model, the S=3/2 core spins due to localized 1,,
electrons of the magnetic Mn™ ions are exchange coupled to
the mobile e, band electrons, represented by an interaction
term —J2;S;- o;, with J of order bandwidth W. The fermi-
onic representation approach for evaluating magnon self-
energy corrections in the FKLM, which allows conventional
diagrammatic tools to be employed for evaluating quantum
corrections beyond the leading order,'® can be readily ex-
tended to include effects of orbital fluctuations.

With an interorbital interaction V included between the
two degenerate e, orbitals, the FKLM magnon self-energy
due to spin-orbital coupling can be directly obtained from
our magnon renormalization analysis of Fig. 6. The required
correspondence is: U— J and m— 2§ so that the exchange
splitting Um — 2. 7S. The FKLM magnon self-energy is thus
obtained from our calculated Hubbard model result using a
multiplicative factor f=7%25)*/U*m?. With U/t=20, m
=0.35, J/t=4, and 25=3, we obtain f=1/6. As the FKLM
bare magnon energy ~(¢/18)(1—cos ¢) is smaller than the
Hubbard model bare magnon energy ~(z/3)(1—cos q) by
roughly the same factor, the FKLM renormalized magnon
energy wq=w3—25p_orb(q) will also be as in Fig. 6, only
scaled down by a factor (1/6). Taking the hopping energy
scale 1~200 meV corresponding to a realistic bandwidth
~2 eV, the magnon energy scale in Fig. 6 is ~30 meV for
ferromagnetic manganites, in agreement with the measured
magnon energies. '3

Since the FKLM magnon self-energy goes as the fourth
power of J/t explicitly, the anomalous zone-boundary soft-
ening effect should be especially pronounced in narrow-band
systems. Indeed, zone-boundary magnon softening is clearly
seen to occur in the relatively low-T or narrow-band mate-
rials and broadband materials such as La,;Pby3;MnO5 show
nearly Heisenberg behavior, in agreement with this predic-
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tion. Systematic studies of doping dependence of the zone-
boundary magnon softening indicates that the higher the
doping level, the larger the zone-boundary softening.'? Fur-
thermore, doping dependence of spin dynamics indicates that
the measure spin stiffness D~ 160+ 15 meV A? remains es-
sentially unchanged while the zone-boundary magnon soft-
ening (denoted by the ratio J,/J;) is found to be enhanced
linearly with increasing doping.

IX. CONCLUSIONS

The correlated motion of electrons in the presence of
strong orbital fluctuations and correlations was investigated
in an orbitally degenerate ferromagnet with two orbitals per
site with respect to magnetic couplings and excitations. A
systematic Goldstone-mode-preserving approach was em-
ployed to incorporate correlation effects in the form of self-
energy and vertex corrections so that both long-wavelength
and zone-boundary magnon modes could be studied on an
equal footing. Our investigation focused on the anomalous
momentum dependence of the three- and four-fermion inter-
action vertices which determine the magnon self-energy and
the role of different orbital fluctuation modes, particularly
near the orbital-ordering instability where orbital fluctuations
are relatively soft.

Orbital fluctuations were generically shown to impart an
intrinsically non-Heisenberg (1-cos g)*> character to the
magnon self-energy in the I'-X direction of interest. This
generic behavior was ascribed to a quadratic structure of the
spin-orbital interaction vertex resulting from a new class of
diagrammatic contributions associated with the orbital de-
gree of freedom. These diagrams are absent in the single-
orbital case, the essential difference being that orbital fluc-
tuations couple to electrons of both spin.

The absence of any ¢ contribution in this non-Heisenberg
magnon self-energy for small g implies that the spin stiffness
is not renormalized by orbital fluctuations generated by the
interorbital density interaction V. In a multiorbital ferromag-
net, with intraorbital Coulomb interaction U, interorbital in-
teraction V, Hund’s coupling J, and orbital degeneracy N,
the spin stiffness therefore continues to be essentially deter-
mined by the intra-atomic factors U, J, and N, through the
effective quantum parameter [U?+(N-1)J?]/[U+(N-1)J]?
as obtained earlier’® and the interaction V does not play an
important role.

However, the strong enhancement of magnon self-energy
near the zone boundary resulted in a strong anomalous mag-
non softening in the I'-X direction, which increases signifi-
cantly with hole doping away from quarter filling. Our inves-
tigation thus clarifies the completely different roles of
interactions J and V, representing magnetic and charge parts
of the interorbital Coulomb interaction. While Hund’s cou-
pling enhances ferromagnetism by strongly suppressing the
effective quantum parameter, orbital fluctuations, and corre-
lations due to V destabilize ferromagnetism by strongly sup-
pressing zone-boundary magnon energies near the orbital-
ordering instability.

With regard to relative importance of different orbital
fluctuation modes, staggered fluctuations with Q near
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(7,77, ) and (77,0, 1) were found to be most important for
the orbital fluctuation magnon self-energy. The spin-orbital
coupling magnon self-energy was found to be strongly sen-
sitive to orbital fluctuation modes due to an interference be-
tween magnetic and charge terms in the interaction vertex.
Thus, while the magnetic part showed strong anomalous mo-
mentum dependence for orbital modes near (7, 7, ), the net
contribution to the total vertex was found to be small due to
cancellation with the charge term. Rather, fluctuation modes
near (7/2,m/2,0) were found to be important for the total
vertex including the charge part. The strong zone-boundary
magnon softening near (0,0, ), arising from staggered or-
bital fluctuations with Q near (7/2,7/2,0), suggests an in-
stability toward a composite structure of spin-orbital correla-
tions involving period 4a orbital ordering in ferromagnetic
planes and intraorbital antiferromagnetic spin correlations in
the perpendicular direction.

These results provide a plausible explanation of the ob-
served anomalies in neutron-scattering studies of spin-wave
excitations in ferromagnetic manganites, where spin stiffness
is seen to remain essentially unchanged whereas the zone-
boundary magnon softening is enhanced with increasing hole
doping and the approach toward CE-type charge-orbital-
ordered states near x=0.5. Our results of strong anomalous
magnon self-energy contribution from different orbital fluc-
tuation modes such as (7,7, ) and (7/2,7/2,0) show the
zone-boundary softening to be a more generic feature of
spin-orbital coupling. Only ferromagnetic orbital correlations
extremely close to the orbital-ordering instability were found
to yield significant magnon softening in earlier studies.'®

The observed zone-boundary magnon softening has been
usually modeled by including a fourth-neighbor interaction
term J,.'3 As J, yields no contribution to the zone-boundary
magnon energy, but contributes significantly to spin stiffness,
it must be accompanied by a corresponding reduction AJ,
=4J, in the NN coupling so that the spin stiffness remains
unchanged, as observed experimentally; the net magnon en-
ergy reduction then has the non-Heisenberg form 2J,
(1—cos g)*. Our anomalous magnon self-energy result of this
form thus provides fundamental insight into the role of or-
bital fluctuations on magnetic couplings and excitations.

Instead of the interorbital interaction Vn; ;g considered
here, intersite interactions V'n;n; would generate similar dia-
grammatic contributions to the magnon self-energy, which
become important near the charge-ordering instability where
charge excitations become relatively soft, resulting in similar
magnon self-energy and anomalous zone-boundary magnon
softening.

APPENDIX
The spin-orbital interaction vertex is obtained as
1_‘sp—orb = Uzv[rga) + ng) + FgC)]

in terms of the three types of fermion vertices shown in Fig.
1(e), which are evaluated by integrating out the fermion de-
grees of freedom as discussed below.

For the first fermion vertex with interaction line V attach-
ing to spin-| fermion, we obtain

(A1)
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1 1
F(a)=_ ( )( ).
} % e]l:q—elt +w-in eth—elT;+Q—i7/

(A2)

The second vertex T =TV +T¥? consists of a similar all
magnetic term

1 1
3 % eth—elZ_QJrq+w—i77 e]l(tQ—elT;+Q—i17

(A3)

and a magnetic-charge term

1

(b2) _

-3 (o)
kK L\6 q—& to—in
><<
Eltq+Q_

+
( GitQ -

1
611_+w—Q—i77>

1 )
elth+q+ w-in
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X _1 : )} (A4)

Ek_Q+q—611 —w+Q-in

In Eq. (A3), there is no restriction on the fermion energy
€-Qug 3 contributions with both particle (+) and hole (=)
energies are included. Finally, the third vertex F ) involves a
U interaction line and a spin-T bubble attached to the spin-|
fermion lines, and is given by

I'Y =-T{Ux(q - Q0 - Q). (AS)

For ¢g=0, the spin-orbital interaction vertex I, ., vanishes
identically, ensuring that the Goldstone mode is explicitly
preserved. Both -I (3“) and ng D reduce to x,(Q,Q)/(2A

+w) for g=0, whereas both —T'{? and T reduce to
X01(Q,w—Q) on setting Ux,(Q,{)=1 at the magnon pole
so that from Eq. (A1) [, 41, =0 for g=0.

Singular contributions in the three-fermion vertex I'; ex-
actly cancel out, as for the four-fermion vertex I', discussed
below Eq. (11). Thus, the singular contribution of Eq. (A3)
due to vanishing energy denominator eﬁfQ—eth qt @ €X-
actly cancels the corresponding contribution from the second

term of Eq. (A4).
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